Monitoring of switches & crossings (turnouts) and tracks

Elias Kassa, Amund Skavhaug
Norwegian University of Science and Technology
Amir M. Kaynia
NGI
Outline

• Background
• Analysis of turnout failure statistics
• Location of hotspots using GPR
• Monitoring of switches & crossings
• Field testing
• Future development
• Summary
BACKGROUND
Turnout populations

<table>
<thead>
<tr>
<th>Countries</th>
<th>Track (km)</th>
<th>S&C population</th>
<th>S&C units per track kilometre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>6,500</td>
<td>12,200</td>
<td>1.88</td>
</tr>
<tr>
<td>Italy</td>
<td>27,100</td>
<td>42,700</td>
<td>1.58</td>
</tr>
<tr>
<td>Netherlands</td>
<td>6,500</td>
<td>7,800</td>
<td>1.20</td>
</tr>
<tr>
<td>UK</td>
<td>31,100</td>
<td>25,800</td>
<td>0.83</td>
</tr>
<tr>
<td>Sweden</td>
<td>14,900</td>
<td>12,000</td>
<td>0.81</td>
</tr>
<tr>
<td>France</td>
<td>65,100</td>
<td>25,600</td>
<td>0.40</td>
</tr>
</tbody>
</table>

- Belgium – 1.88 units/km
- Sweden – 0.81 units/km < 5% of infrastructure
- France – 0.40 units/km
- In Sweden over 12% of track maintenance and 25% of track renewals are spent on S&Cs

- Network Rail is using about 17% of the track maintenance budget and ca. 25% of the track renewal budget in Switches and Crossings
- In addition, cost for disruption and delays in train operation are very high
Failure hierarchy for a turnout unit

Turnout
- To guide the train in the main route
- Primary: to guide the train to diverging route
 - Line blocked
 - Wheel derailment
 - Speed restriction
 - Rail mechanical damage
 - Stretcher bar damage
 - Switching rail failure
 - Switch machine failure
 - Sleeper and fastenings failure

Product
 - Function
 - Failure mode
 - Failure cause
 - Failure mechanism
WP1.1 – Turnout failure classification

- Failure may be classified based on failing components

Failure cause/mechanisms in rail failure
- Rolling contact fatigue
- Wear
- Rail head deformation
- Rail head cracks
- Rail web cracks
- Transverse & Longitudinal rail foot cracks

Switch rail breakage

Fracture

Plastic deformation

Wear

RCF on stock rail

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Failure classification by components

- Failure may be classified based on failing components

<table>
<thead>
<tr>
<th>Components</th>
<th>Failure causes/mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>Wear, rolling contact fatigue, plastic deformation, rail head cracks, rail foot fractures, rail web cracks</td>
</tr>
<tr>
<td>Stretcher bar</td>
<td>Stretcher bar bracket breakage</td>
</tr>
<tr>
<td>Switching machine</td>
<td>Too much or too little power, unable to close the switch rail against the stock rail</td>
</tr>
<tr>
<td>Sliding chair and rollers</td>
<td>Dry slide chair, rusty slide table or fully contaminated lubrication which blocks the movement of switch rail from sliding</td>
</tr>
<tr>
<td>Fastening system</td>
<td>Missing bolts, damaged rail pad, broken base plate</td>
</tr>
<tr>
<td>Sleeper</td>
<td>Rail seat deterioration, flexural cracking at the sleeper centre, and transverse cracking at the fastening bolt</td>
</tr>
</tbody>
</table>
Failure data analysis: failure data from the UK

- Example of failure data analysis based on the failed components

Failed Components

<table>
<thead>
<tr>
<th>Failed Components</th>
<th>Total Number</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch rail</td>
<td>1113</td>
<td>45.3</td>
</tr>
<tr>
<td>Slide chair</td>
<td>747</td>
<td>30.4</td>
</tr>
<tr>
<td>Ballast</td>
<td>194</td>
<td>7.9</td>
</tr>
<tr>
<td>Schiweg Roller</td>
<td>138</td>
<td>5.6</td>
</tr>
<tr>
<td>Stretcher bar</td>
<td>111</td>
<td>4.5</td>
</tr>
<tr>
<td>Stock rail</td>
<td>71</td>
<td>2.9</td>
</tr>
<tr>
<td>Crossing</td>
<td>33</td>
<td>1.3</td>
</tr>
<tr>
<td>Fishplate</td>
<td>24</td>
<td>1.0</td>
</tr>
<tr>
<td>Back Drive</td>
<td>18</td>
<td>0.7</td>
</tr>
<tr>
<td>Sleeper</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>Spacer Block</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>Sum</td>
<td>2458</td>
<td>100</td>
</tr>
</tbody>
</table>

Frequency (%)

[Bar chart showing frequency of each component]
Failure data analysis, Cont’d

- Data assessment based on possible failure causes (mechanisms)
Failure classification by severity

- Severity level is one way of failure classification method to categorise the criticality of the effects on the function of item or component

<table>
<thead>
<tr>
<th>Severity level</th>
<th>Criticality nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I - Catastrophic</td>
<td>A failure which may cause death or total system loss</td>
</tr>
<tr>
<td>Category II - Critical</td>
<td>A failure which may cause severe injury, major property damage, or major system damage</td>
</tr>
<tr>
<td>Category III - Marginal</td>
<td>A failure which may cause minor injury, minor property damage, or minor system damage which will result in delay or loss of availability or speed restriction</td>
</tr>
<tr>
<td>Category IV - Minor</td>
<td>A failure not serious enough to cause injury, property damage, or system damage, but which will result in unscheduled maintenance or repair</td>
</tr>
</tbody>
</table>
Failure data analysis, Cont’d

- **Data assessment based on rectification**

<table>
<thead>
<tr>
<th>Rectification</th>
<th>Total Number</th>
<th>Frequency %</th>
<th>Failed Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-iced</td>
<td>559</td>
<td>22.7</td>
<td>Switch rail, Slide chairs, Schiwag Roller, Back drive, Stretcher bar</td>
</tr>
<tr>
<td>Lubricated</td>
<td>445</td>
<td>18.1</td>
<td>Slide chairs, Schiwag Roller</td>
</tr>
<tr>
<td>Removed obstacle</td>
<td>427</td>
<td>17.4</td>
<td>Switch rail, Slide chairs, Stretcher bar, Back drive</td>
</tr>
<tr>
<td>Replaced/Renewed</td>
<td>243</td>
<td>9.9</td>
<td>Stretcher bar, Slide chairs (broken), Crossing (nose crack), Fish plate, Switch rail, Stock rail, Sleeper, Space block, Ballast</td>
</tr>
<tr>
<td>Lift & Pack</td>
<td>190</td>
<td>7.7</td>
<td>Ballast</td>
</tr>
<tr>
<td>Grind</td>
<td>167</td>
<td>6.8</td>
<td>Switch rail, Stock rail, Rail weld</td>
</tr>
<tr>
<td>Adjusted</td>
<td>143</td>
<td>5.8</td>
<td>Schiwag Roller, Switch rail, Stretcher bar, Back drive, Slide chairs, Ballast</td>
</tr>
<tr>
<td>Cleaned</td>
<td>136</td>
<td>5.5</td>
<td>Slide chairs, Switch rail, Schiwag Roller</td>
</tr>
<tr>
<td>Weld repair</td>
<td>71</td>
<td>2.9</td>
<td>Switch rail, Stock rail, Crossing</td>
</tr>
<tr>
<td>Tightened</td>
<td>70</td>
<td>2.9</td>
<td>Slide chairs, Stretcher bar (nuts), Back drive, Fish plate</td>
</tr>
<tr>
<td>Gauged</td>
<td>7</td>
<td>0.3</td>
<td>Track gauge</td>
</tr>
</tbody>
</table>

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
LOCATION OF HOTSPOTS
WP1.2 – Location of Hotspots
Ballast monitoring using GPR

- This is part of the WP1 – FIND: to identify locations of hotspots on the ballast structure
- To map the ballast with Ground Penetrating Radar

Notice changes in:
- Aggregate size
- Layer thickness
- Depth to rock
- Water distribution in ballast
- Determining degree of ballast fouling
- Locating hidden objects/utilities
- Detecting ballast anomalies
Water infiltration monitoring

Water infiltration monitored with GPR (3d-Radar antenna type)

Water is spread in on the ballast in great quantities
GPR measurements
MONITORING OF SWITCHES, CROSSINGS
WP1.3 – Monitoring of switches, crossings and tracks

• This study addresses use of smart sensor technology for health monitoring of turnouts to determine the real-time condition of the infrastructure

• A key part of this work is to find and identify risks in railway track and S&C assets before they fail

• The objectives will be achieved through a combination of numerical simulation and remote monitoring of rail vibrations
Approach

• Detection of Acceleration Sensitive Areas of a Rail Using Dynamic Analysis
• Development of wireless sensor for monitoring of switches, crossings and track
Dynamic Analysis

MBS code Gensys

Wheel-rail forces
Contact points

Loading platform

FE tool ABAQUS

wheel-rail contact force and contact location

Rigid Body

Load Platform

accelerations at rail head, rail web and rail foot

Test Point in rail

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Rail sampling points

Along the track

Cross section

Across the rail

The rail acceleration time-history

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
System Architecture

Sensor infrastructure for remote monitoring

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Key demands

Some of the key demands of the remote monitoring:

– a system which is cheap, reliable and easy-to-install
– system should provide real-time information and continuous monitoring
– should be inbuilt and allow high integration into the already existing infrastructure
– should be low battery-powered and wireless
Wireless sensor hardware

- Digital accelerometer
 - continuously monitor vibrations on train passage
 - wake-up on threshold
 - sampling on 3200 Hz
 - capable to measure on 3-axis
 - sensing range ±0.5, 1, 2, 4g
 - sensitivity resolution 1024LSB/g

- Power supply
 - Nanopower Buck-Boost
 - High efficient up to 90%

- Temperature sensor
 - ±0.5°C maximum accuracy
Requested structure

Rail casings

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Gateway

- Future type – GSM-R
- Current types - GSM, WIFI, Ethernet
- Responsibility of GW
 - Starting communication
 - Datalog server

RF Power
Old GW 12.5 mW in 360°
New GW 500 mW in 36°
Webserver

- DB with all data
- Post-processing
- Showing the vibration graphs/nod/event
- Showing the power consumption graph/nod
- Showing the temperature graph/nod
- Command page (easily to reprogram nods)
- Links to download RAW data
Tests (Lab and Field)
FIELD TESTING
Field testing at Tommerup, Denmark
Can it be wireless??
Field testing at Tommerup, Denmark

Sensors at the switch heel

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Sensors on the sleeper and on the rail web
Trains passing over the sensors
Installation and testing
System test in Munich, Germany with new and old casings

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Accelerations at the sleeper: Reference and DestinationRail sensor

Vertical, longitudinal and lateral accelerations

Vertical acceleration of the reference sensor
Validation – Comparison of sleeper acceleration with reference sensor

[Graphs showing comparison of sleeper acceleration with reference sensor]
Comparison - rail web acceleration

[Graph 1: DESTinationRAIL sensor vs reference sensor]

[Graph 2: DESTinationRAIL sensor vs reference sensor]

DESTination RAIL
Decision Support Tool for Rail Infrastructure
EU Project No. 636285
Preliminary data assessment healthy and faulty train passage
Future development

• **Data processing and trend recognition** (is the turnout healthy?)

• Software updates (leading to lower consumption)
 – Increase RF transfer rates 19,2kbps -> 150 - 400kbps
 – Optimizing data handling (buffers)
 – Data compression & encryption (Sensor-Gateway)

• Hardware updates
 – Sensor - optimizations for lower costs & consumptions, enhance functionality
 – Sensor - investigate possibility of battery-less modules
 – Gateway - GSM-R version

• Advanced websites & data storage
 – graphs, possibility to change settings, GPS coordinates & maps, user roles
 – Smartphone app for creating sensor infrastructure in field
Summary

- Failure risk in turnouts has been assessed based on occurrence of failures.
- Two failure mechanisms are identified to critically affect the turnout primary operation: switch obstruction and dry chair.
- Such kind of failure risk evaluation may support health monitoring of turnouts.
- The field testing revealed possibilities and drawbacks of the 4g accelerometer.
Summary, cont’d

• Good matching of the output characteristics for sleeper acceleration with the reference sensors
• The sensor has less precise clock and need to be looked
• The sensor is being developed with increased acceleration magnitude and more sensors will be deployed at once
 – Sensor - optimizations for lower costs & consumptions, enhance functionality
 – Sensor - investigate possibility of battery-less modules
 – Gateway - GSM-R version