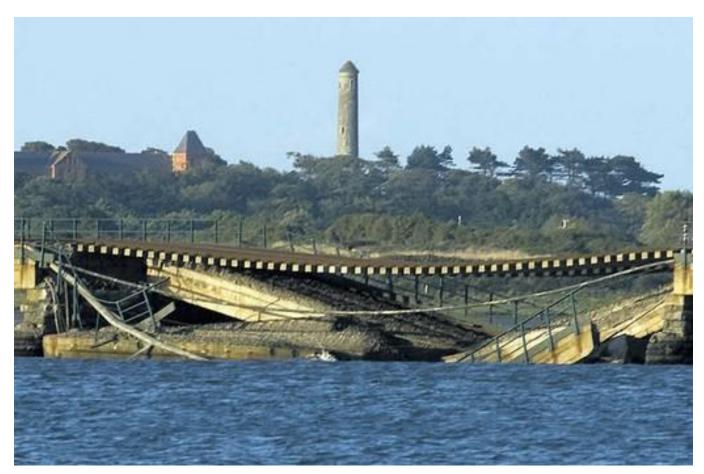


DESTination RAIL – WP 2: Assessment and Modelling

Final Conference 26th April 2018

Lorcan Connolly, ROD-IS



EUROPEAN COMMISSION Innovation and Networks Executive Agency Director **DESTination RAIL Decision Support Tool for Rail Infrastructure** EU Project No. 636285

1

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director **DESTination RAIL Decision Support Tool for Rail Infrastructure** EU Project No. 636285

2

Introduction: WP2 Milestones

Milestone 2.1: Interaction between WP1 & WP2 (Task 2.5) to identify optimum sensor locations for infrastructure (**M10**)

Milestone 2.2: Instrumentation of Boyne Viaduct (M15)

Milestone 2.3: Reliability based assessment framework for earthworks (**M12**)

Milestone 2.4: Selection of case study for train track modelling (M6)

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Introduction: WP2 Deliverables

Deliverable 2.1: Guideline for Probability Based Multi Criteria Performance Optimisation of Railway infrastructure (**M24**)

Deliverable 2.2: Report on Assessment of Bridges(M30)

Deliverable 2.3: Report on Assessment of Earthworks (M28)

Deliverable 2.4: Report on Assessment of Tracks (M30)

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Deliverable 2.1: Probabilistic Basis for Multi Criteria Performance Optimisation of Railway infrastructure

DESUBATION RAIL – Decision Support Tool for Rail Infrastructure Managers Project Reference: 632626 H2023-MIC 2014-2015 Innovations and Networks Executive Agency Project Duration: MM 2014-514 April 2018

Guideline for Probability Based Multi Criteria Performance Optimisation of Railway Infrastructure

Authors * Lorcan Connolly (ROD-IS), Alan O' Connor (ROD-IS), Cormac Reale (GDG)

*Corresponding author: Lorcan Connolly, lorcan.connolly@rod.ie

Date: Dissemination level: (PU, PP, RE, CO): PU This project has received funding from the European Union's Horizon 2020 (<u>ESEBLIC)</u> and Innovation program under grant agreement No 636285

D2.1 Guideline for Probability Based Multi Criteria Performance Optimisation of Railway Infrastructure <u>DESTINATION</u> RAIL – Decision Support Tool for Rail Infrastructure Managers

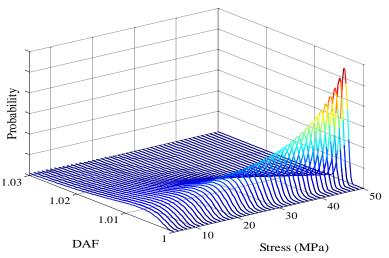
Table of Contents

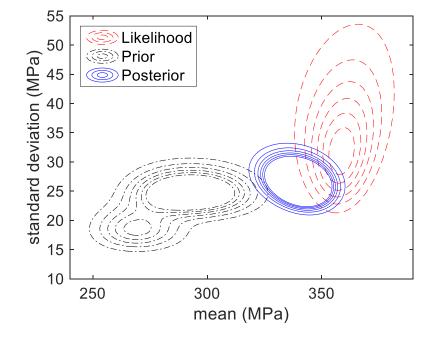
DESTRUCT

	ecutive Summary	4
	roduction	
3 As	sessment Procedure	6
3.1	Introduction	6
3.2	Types of assessment	7
3.3	Criteria for assessment	8
3.4	Classification of assessment	9
3.5	Assessment levels (for model based assessment)	11
3.6	Possible refinement of assessment	
4 Pr	obability Based Assessment	
4.1	Introduction	
4.2	Limit states	
4.3	Reliability class	
4.4	Types of failure	
4.5	Target reliability levels	
4.6	Reliability of structural systems	
4.7	Time variant reliability assessment	
4.8	Sensitivity analysis	
5 M	delling Uncertainty	
5.1	Introduction	
5.2	Methods of Analysis	
5.3	Probability Distributions	35
5.4	Model uncertainty	
6 L.	ad Modelling	
6.1	Introduction	
6.2	Permanent gravity loads	
6.3	Load distribution by the rails, sleepers and ballast	
6.4	Vertical Train loads	
6.5	Other variable loads	
6.6	Accidental Loads	
6.7	Dynamic effects	
6.8	Fatigue loads	
6.9	Application of traffic loads on railway bridges	
		2

	Performance Optimisation of Railway Infrastructure	
Rot	DESTINAtion RAIL – Decision Support Tool for Rail Infrastructure Man	agers
6.10	Groups of loads - characteristic values of the multi-component action	
7 Mo	delling of Resistance Variables	
7.1	Introduction	
7.2	Reinforced concrete	
7.3	Prestressed concrete	
7.4	Structural Steel	
7.5	Masonry	
7.6	Soil	
7.7	Fatigue	
8 Up	dating of Variables and Distributions	
8.1	Introduction	
8.2	Testing and inspection results	
8.3	Updating individual structural properties or whole structure properties	
9 De	terioration	
9.1	Introduction	
9.2	Impacts of climate change	
9.3	Probabilistic modelling of reinforced concrete corrosion	
9.4	Probabilistic modelling of structural steel deterioration	
10 5	ummary and Conclusions	
11 F	leferences	
Annend	ix A: Bayesian Updating Theoretical Example	

Rail


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director



Deliverable 2.1 : Developments

- Convolution / maxima distributions Parameters
- Dynamics references to deliverable 2.2 (M30)
- Bayesian Updating
- Reliability-based Fatigue
- Probabilistic Deterioration
- System Reliability

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Deliverable 2.2: Assessment of Bridges

- Probabilistic Assessment
- Model Calibration
- Dynamic Allowance
- Fatigue Analysis
- Deterioration
- System Analysis

- Application of Empirical Mode Decomposition & discrete fast Fourier spectral analysis for damage detection
- Soil-Structure Interaction with cyclic loading

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

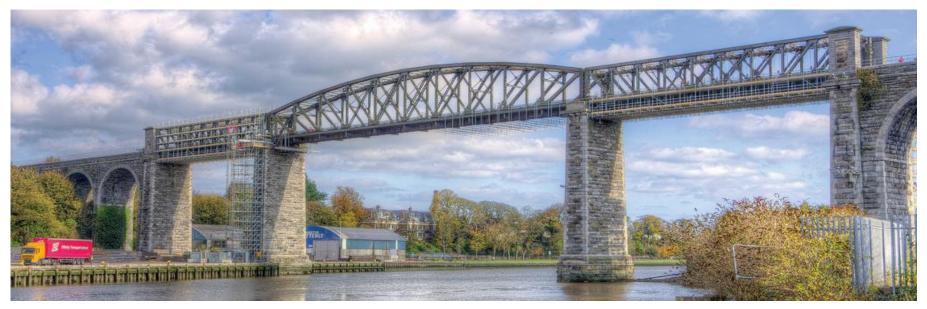
Deliverable 2.3: Assessment of Earthworks

- Apply Reliability Theory and Probabilistic approaches to slope stability for railways.
- Account for different failure mechanisms and climatic effects
- Use monitoring data from WP1 to develop appropriate statistical distributions and employ said distributions in analyses.
- Develop fragility curves to describe vulnerability of earthworks to rainfall events

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Deliverable 2.4: Assessment of Tracks

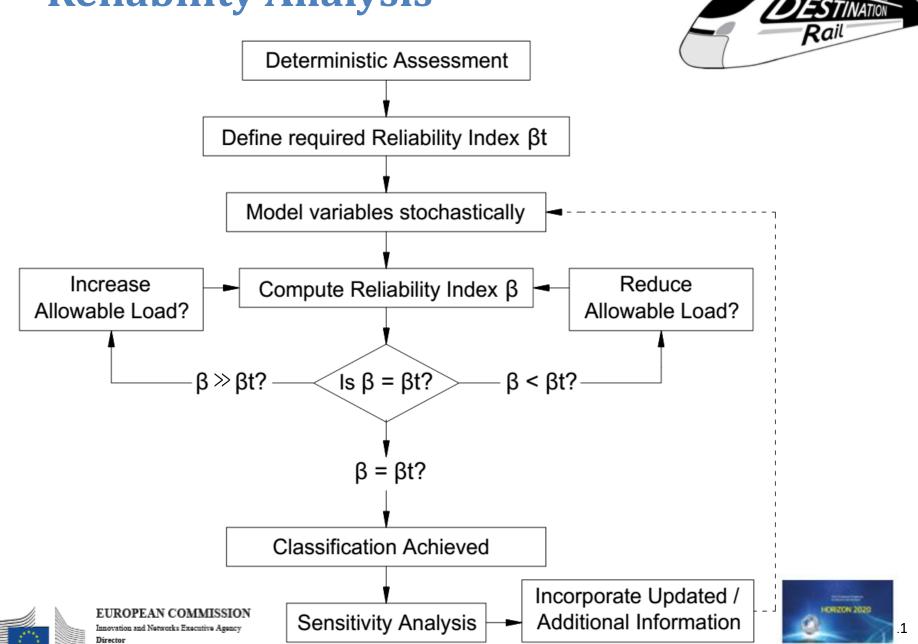
- Investigation of the difference between loaded and unloaded longitudinal level and relation to track supporting layer stiffness variation, (GPR measurement).
- Numerical method to identify track stiffness variation in long section based on the measurement result from strain gauge and other measurement methods.
- Synchronization of the measurement result from track recording car to rail seat.



EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

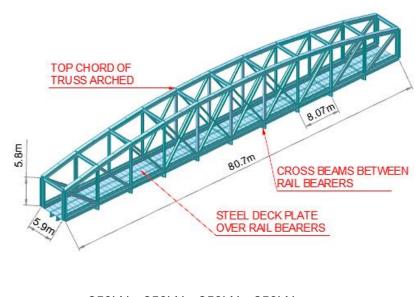
DESTination RAIL Reliability Assessment Models for Structures

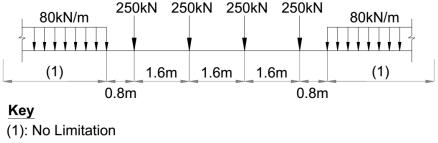
26th April 2018 Lorcan Connolly, ROD-IS



EUROPEAN COMMISSION Innovation and Networks Executive Agency Director **DESTination RAIL Decision Support Tool for Rail Infrastructure** EU Project No. 636285

10


Reliability Analysis


Boyne Viaduct Instrumentation – Deterministic Assessment

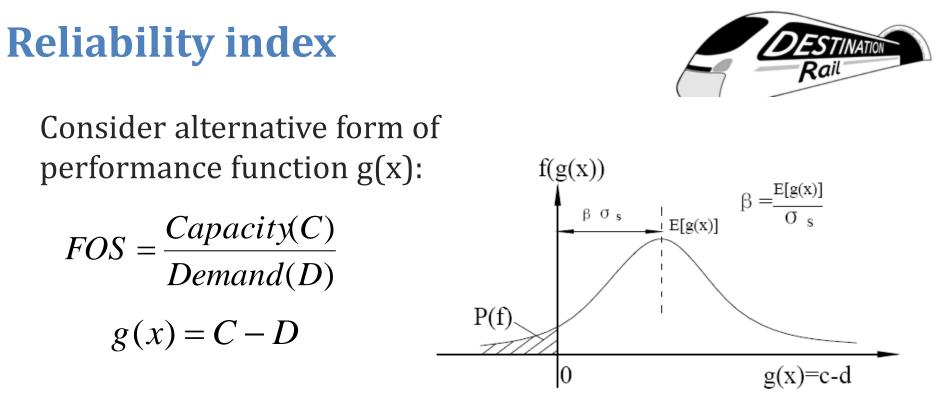
- Assessment to BD21/01
- Type RU live loading
- No assessment of joints
- No assessment of deck plate

Member	Effect	Usage
Cross beam	Y	21%
Rail bearer	Y	-6%
Rail bearer	S	18%
Bottom chord	Y	56%
Top chord	СВ	19%
Truss diagonal	Y	3%
Truss Vertical	СВ	13%

Rail


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Reliability Assessment

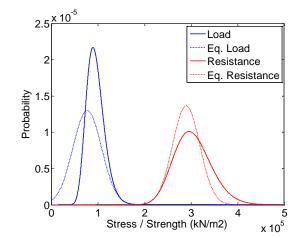

- Consider inputs to assessment as random variables
- Perform assessment 1E6 times, randomly selecting from distributions to calculate final load/resistance distribution

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

If $C - D \le 0 \Rightarrow$ limit state failure

The β -index represents the mean of the performance function, divided by the number of standard deviations between the mean and origin.

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director



Boyne Viaduct Instrumentation – Reliability Assessment

- Stochastic distributions (DRD guidelines)
- Simulation & FORM analysis in MATLAB
- β-value of 4.3 calculated for yielding critical rail bearer

Variable	Distribution	μ	CoV
Yield Strength MU. Yield Strength	LogN LogN	297 MPa 1.0	0.11 0.10
Dead Load Stress	Norm	1.0 17.1 MPa	0.10
MU. Dead Load Stress	Norm	1.0	0.05
SDL Stress	Norm	13 MPa	0.10
MU. SDL stress	Norm	1.0	0.05
Fraction of RU loading	Gumb	0.66	0.20
MU. Live Load	Norm	1.0	0.15
ε Increment	Norm	0.14	1.00

<u>Conservatism</u>

- Live Load
- Uncertainty
- Yield strength
- Dynamics

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

DESTination RAIL

Decision Support Tool for Rail Infrastructure EU Project No. 636285

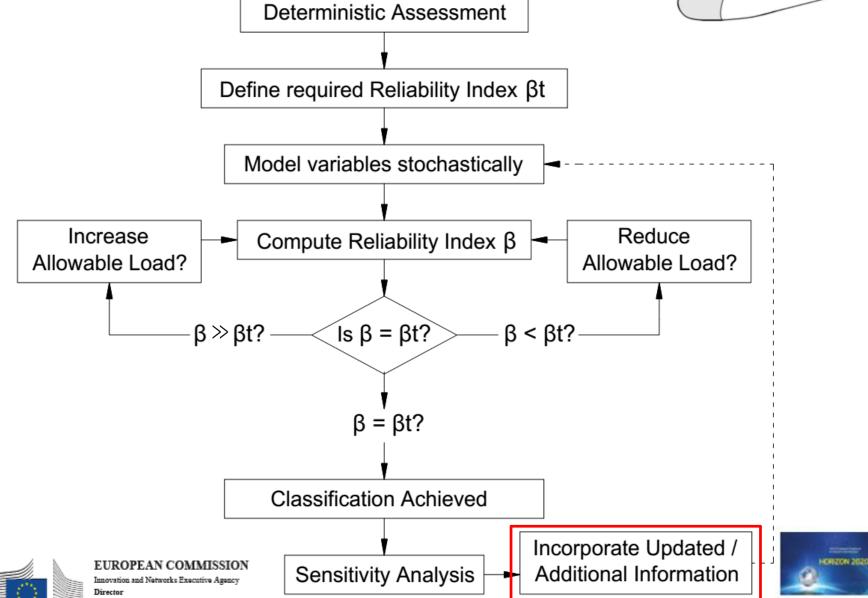
Boyne Viaduct Instrumentation – Reliability Assessment

ISO 2394: 2015 - General principles on reliability for structures

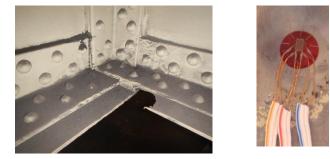
Consequences of failure						
Very low	Low	Medium	High			
2.3	3.1	3.8	4.3			

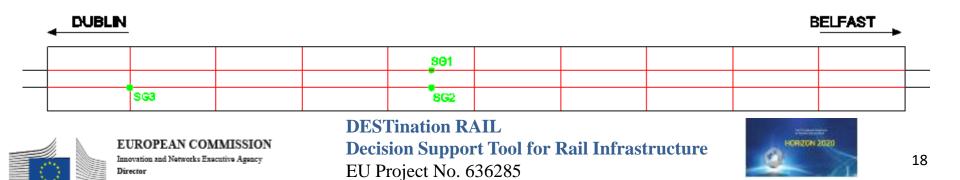
JCSS, (2001), Probabilistic Assessment of Existing Structures

Cost of safety	Consequences of failure				
measures	Minor	Moderate	Large		
Large	3.1	3.3	3.7		
Normal	3.7	4.2	4.4		
Small	4.2	4.4	4.7		

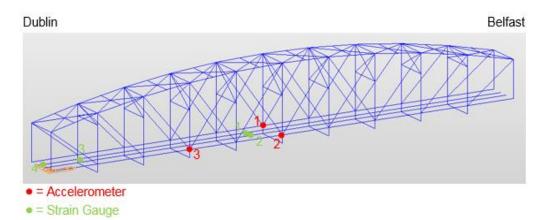

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Task 2.1: Reliability Analysis


7

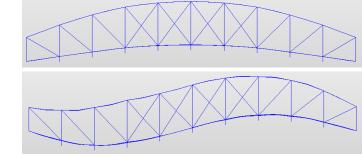

Boyne Viaduct Instrumentation – Strain Measurement

- Critical section of rail bearers (centre span) instrumented with rosettes.
- Corrosion on one side → instrument both sides
- Critical cross beam instrumented for model calibration & fatigue analysis
- Rosettes \rightarrow principal stress calc



Boyne Viaduct Instrumentation – Acceleration Measurement

- Identification of mode shapes and frequencies from FE model
- Mobile measurement used to specify sensors.
- Triaxial accelerometers used.

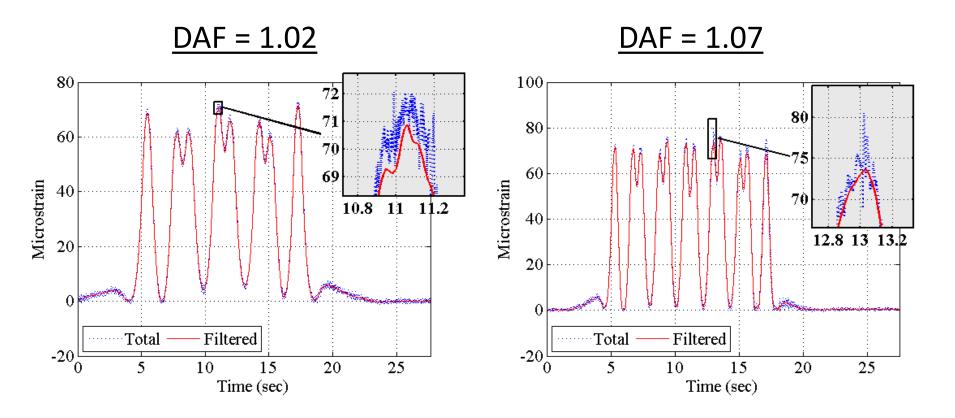


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director **DESTination RAIL Decision Support Tool for Rail Infrastructure** EU Project No. 636285

19

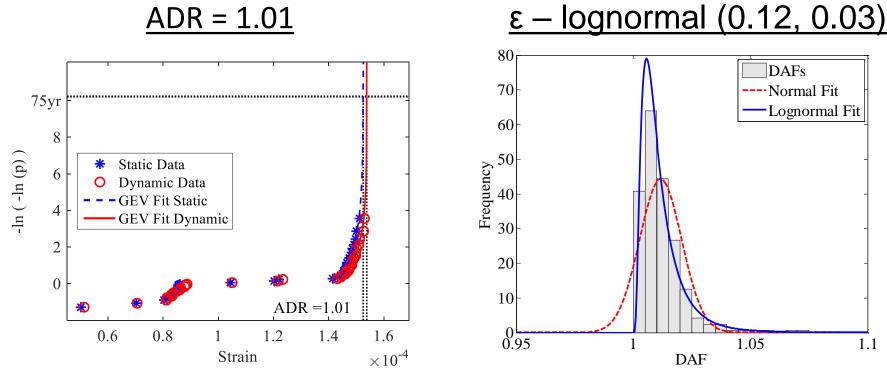
Boyne Viaduct Instrumentation - Data Summary

- Final sensor installed on 10/11/2015.
- Data from 22/10/2015 18/01/2016.
- 35 days of data measurement
- 843 events with 726 train events
- 30 full days (\geq 8 events) with up to 37 trains per day.
- Data provided in .csv and .mat format
- Current monitoring


Fields	🕂 chnum 🔤 chna	ame 🔒 samples	🔒 samplerate	Η basetime	abc xtitle	abc xunits	abc ytitle	abc yunits	🖆 data
1	16 'BH1@Vb	att 54532	2 1000	59.2060	'Time'	'secs'	'BH1@Vbatt	'Volts'	1x54532 single
2	17 BH1@R3	_0 54532	2 1000	59.2060	'Time'	'secs'	'BH1@R3_0	'uE'	1x54532 single
3	18 'BH1@R3	_0 54532	2 1000	59.2060	'Time'	'secs'	'BH1@R3_0	'uE'	1x54532 single
4	19 'BH1@R3	_0 54532	2 1000	59.2060	'Time'	'secs'	'BH1@R3_0	'uE'	1x54532 single
								· _ ·	

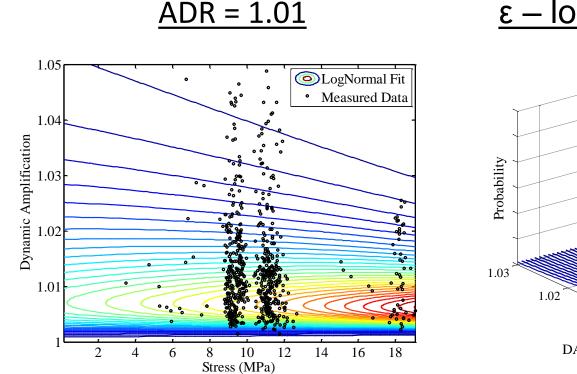
EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

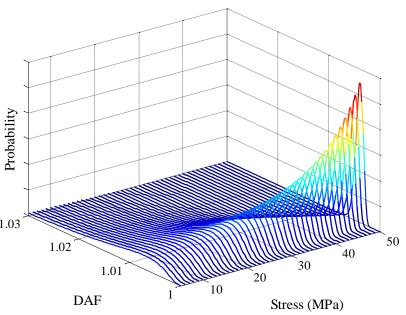
Data usage - Dynamic Analysis Removal of dynamics – low-pass filtering


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Calculation of ADR & ε - distribution

 ϵ – distribution not indicative of load!


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director



Stress Varying ε - distribution

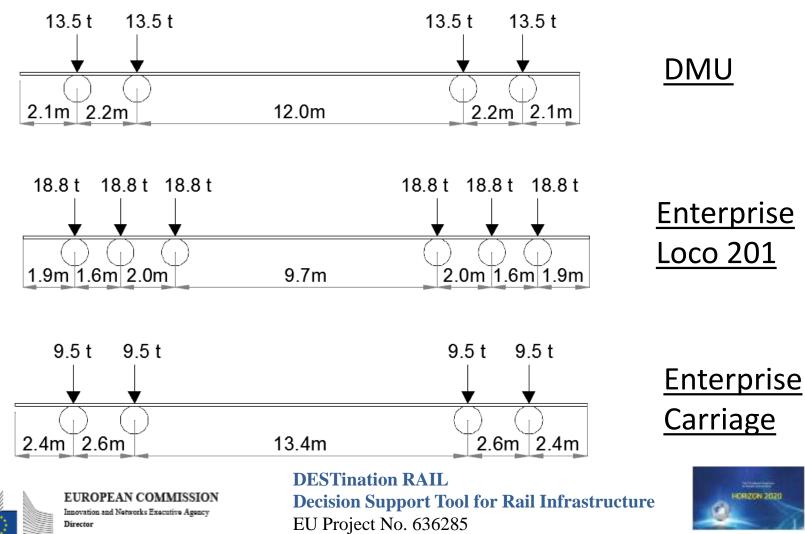
<u>ε – lognormal (0.12, 0.03)</u>

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

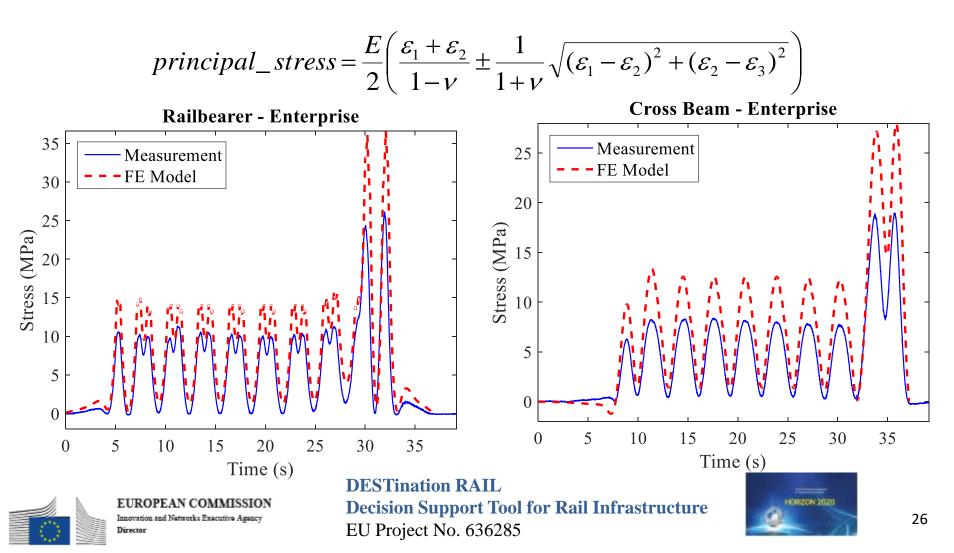
Data usage - Dynamic Analysis

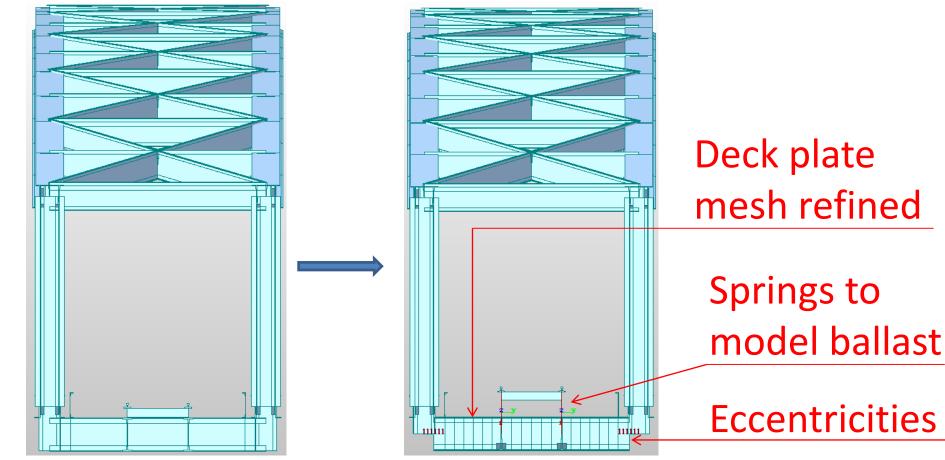
Results – effect on assessment of rail bearer

	Deterministic Assessment Utilisation	Probabilistic Assessment reliability index (β)
Original	-6%	4.3
Use of ADR	20%	-
Use of standard logn distribution fit to ε	-	4.7
Use of stress-varying lognormal fit to ε	-	5.1


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

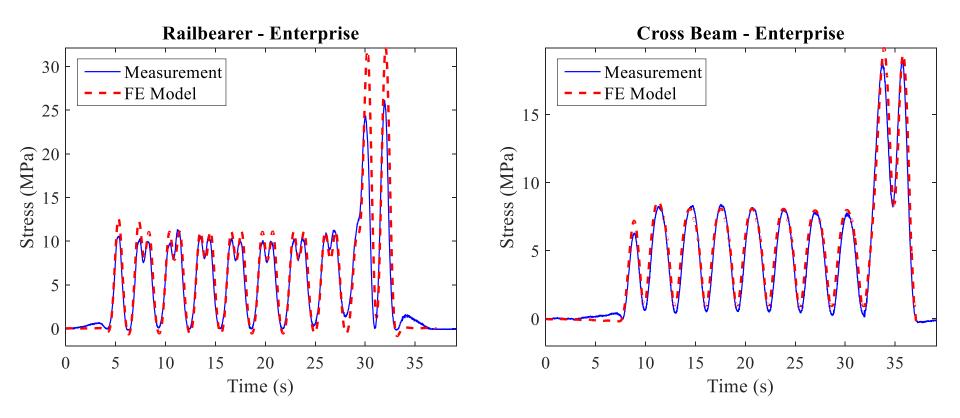
Data usage – Model Calibration


Calibration for two locations and two trains


Data usage – Model Calibration

Calibration for two locations and two trains

Data usage – Model Calibration *Model refinement:*


EUROPEAN COMMISSION Innovation and Networks Executive Agency Director **DESTination RAIL Decision Support Tool for Rail Infrastructure** EU Project No. 636285

Data usage – Model Calibration

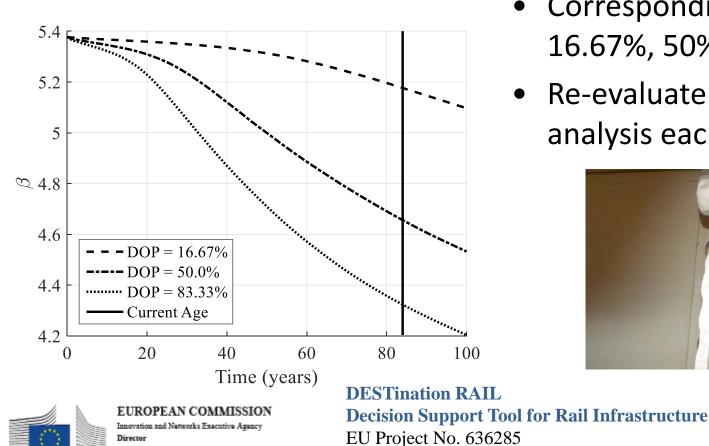
Comparison of response after refinements

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Data usage – Model Calibration

Recalculation of reliability index

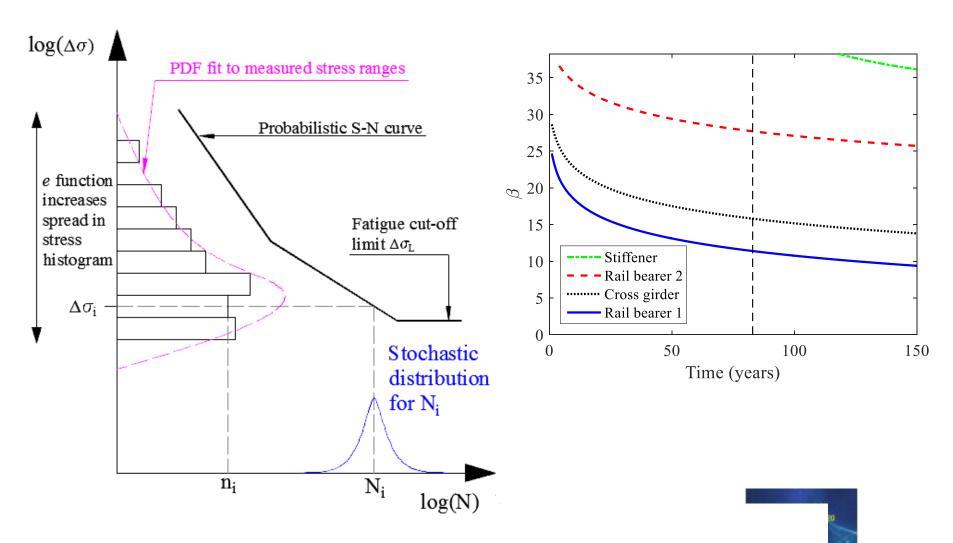
- 1) Refined FE model
- 2) Optimised stress-varying DAF modelling
- 3) Reduction of uncertainty in capacity due to calibration from 10.4% 6.6%.
- Final reliability index (β) = 7.55
- Note: use of fractile value of LM71 still uncertain!



EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

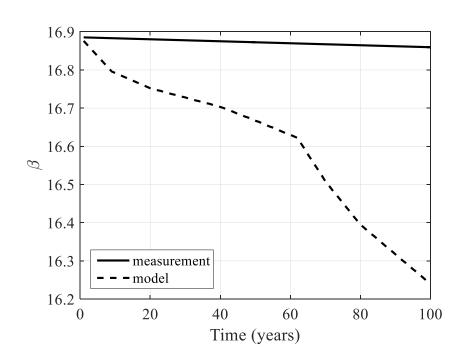
Probabilistic Corrosion Modelling

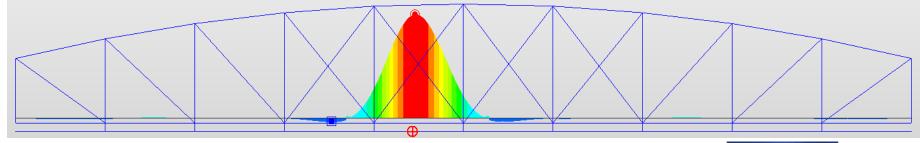
- Critical corrosion mechanism: Pitting
- pit diameters of 5, 15 and 25 mm were investigated with a constant pit spacing of 30 mm.


- Corresponding DOP of 16.67%, 50% and 83.33%
- Re-evaluate reliability analysis each year

Probabilistic Fatigue Assessment

Measurement-Based Assessment




ESTINATION

Probabilistic Fatigue Assessment

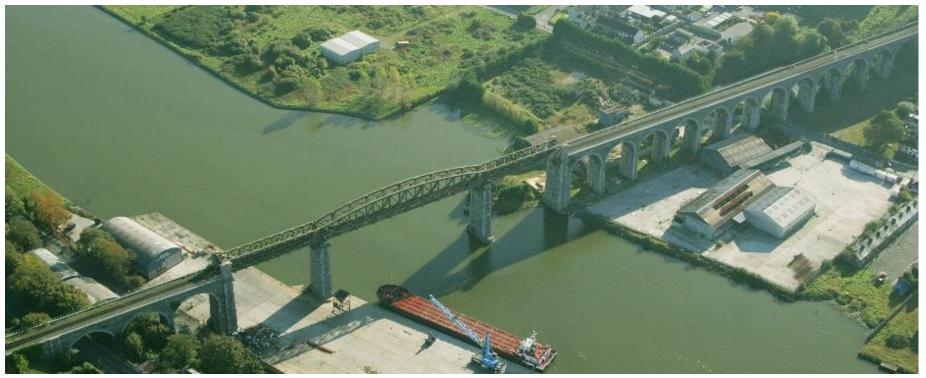
Model-Based Assessment

- Timetables from IRRS
- Train passages from 1932
- Can be applied throughout calibrated FE model, to every element.
- Also to connections

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director **DESTination RAIL Decision Support Tool for Rail Infrastructure** EU Project No. 636285

Conclusions

- Probabilistic approach can show safety even if traditional assessment has shown insufficient capacity at ULS / SLS / FLS.
- Deterioration can be considered with uncertainty
- Use of SHM data:
 - Significant reductions in dynamic allowance
 - Refined FE models for higher accuracy
 - Probabilistic fatigue assessment
- Further input into Risk Calculation



EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

Thank you

EUROPEAN COMMISSION Innovation and Networks Executive Agency Director

lorcan.connolly@rod.ie

